

橋梁点検支援ロボット

みる。 続る。 診る

> 特許 取得

NETIS [登録番号] QS-170024-VI 点検支援技術 性能カタログ

[技術番号] BR010018-V0423 BR020006-V0423

Zivii ジビル調査設計株式会社

特徴·概要

安心

正確

効率化

- ●橋梁点検車の使用が困難な 特殊橋梁形式(トラス・歩道 橋等)の点検に最適。
- ●特殊な点検仮設(足場・大型 点検車・ロープアクセス)に 対し、低コストで点検が可能。
- ●橋面上での落ち着いた作業 環境で安心して点検が可能。
- ●点検員・診断員が現地にて 直接高精細なライブ映像を 見ながら健全性の診断が可能。
- ●点検画像は高精細・鮮明で 肉眼による近接目視以上の 確認が可能。
- 打音点検・ひびわれ幅測定・ 点検障害物除去・狭隘部点検等、 多彩な点検支援が可能。
- ●細やかなロボット操作で損傷の 近接撮影が可能。2回目以降の点検 作業での経年変化確認に最適。
- ●loT技術で現場の点検画像を 事務所にライブ配信が可能で、 現場と事務所のやり取りを リアルタイムに実現可能。
- ●橋梁点検支援ロボットと専属 オペレータ・道路橋点検士が全国 どこでも出向き、点検を強力に サポート。(オペレータ付リース)

現場作業の流れ(搬入から点検開始まで)

Step.1 ロボット機材搬入 所用時間10分

ロボット運搬専用車両(2t・4tトラック)で搬入 積み下ろしに必要なスペース幅3m×長さ10m程度必要

Step.2 ロボット組み立て 所用時間30分~50分

組み立てスペースとして幅2m×長さ10m程度が必要 歩道上での組み立ても可能

Step.3 移動・点検開始 点検箇所まで自走で移動して

点検開始

新技術が活用できるシーン

近接橋·規制困難

歩道橋等が点検対象橋梁に近接 し、橋梁点検車の使用が困難な場合 も近接している歩道橋等から点検が 可能です。それにより対象橋梁の交 通規制の回避をすることが出来ます。

歩道橋

歩道橋等、橋梁点検車の乗り入れ が困難な橋梁形式の場合も点検 が可能です。

トラス橋

斜材により橋梁点検車デッキの 挿入が困難な箇所も挿入すること ができるため点検が可能です。

幅員の広い歩道

幅広の歩道や横断防止柵等により 橋梁点検車の使用が困難な場合 も、歩道からの点検が可能です。

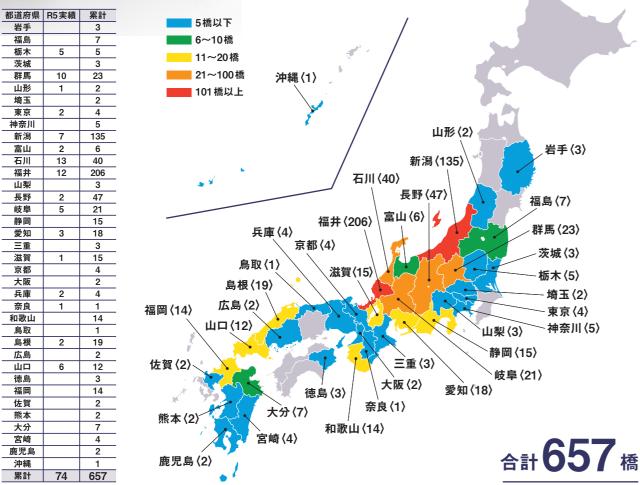
夜間作業

照明機能で夜間でも十分な照度 を確保しての点検が可能です。

これまでに600橋を超える使用実績から 改良を重ねています。(含和6年4月時点)

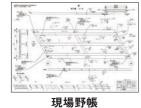
インフラ維持管理業務に新技術導入を検討している 地方自治体職員の方々へ

国土交通省 地方自治体に向けた 維持管理への新技術導入の手引き(案)


https://www.mlit.go.jp/report/press/sogo15_hh_000270.html

点検実績·成果品例

地域別点検橋梁実績 (令和6年4月時点)


都道府県	R5実績	累計
岩手		3
福島		7
栃木	5	5
茨城		3
群馬	10	23
山形	1	2
埼玉		2
東京	2	4
神奈川		5
新潟	7	135
富山	2	6
石川	13	40
福井	12	206
山梨		3
長野	2	47
岐阜	5	21
静岡		15
愛知	3	18
三重		3
滋賀	1	15
京都		4
大阪		2
兵庫	2	4
奈良	1	1
和歌山		14
鳥取		1
島根	2	19
広島		2
山口	6	12
徳島		3
福岡		14
佐賀		2
熊本		2
大分		7
宮崎		4
鹿児島		2

沖縄

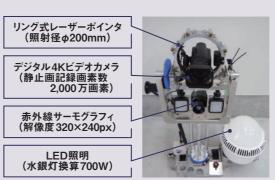
支援技術成果品例

ロボット点検成果アウトプットイメージ

損傷計測写真アルバム

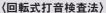
点検調書簡易作成システム(要ご相談)

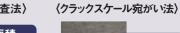
- ●点検結果データ・損傷写真をデータベース化して、 Excelマクロにより点検調書を簡易作成するシステム
- ●管理者のスタイルに合わせた調書の作成が可能


※北海道・東北・九州のお客様からの業務依頼は要相談

機能紹介

視る

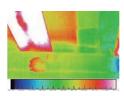

多機能カメラ台車



診る

打診&クラックゲージ台車

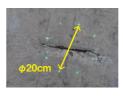
(注)台車の移動範囲は、鉛直ロッド付け根より スタンダード3mまで、ハイグレード7mまで測定可能


高精細な画像取得

- ・4Kビデオカメラによる高精細な静止画・ 動画の取得
- ・静止画記録画素数2,000万画素
- ・ズーム機能で細やかな損傷も点検可能

クラックゲージ計測機能

- ・ロボットアームでクラックスケールを 宛がって直接計測
- ・従来の計測方法と同じ精度を確保


赤外線サーモグラフィ搭載

- ・非破壊・非接触でかぶりコンクリートの 浮きを検出
- 水道添架管の漏水箇所の点検 (注) 浮きの検出は気温条件に左右されます

回転式打診機能による 直接打診

- ・打診球でコンクリート表面を直接打診し て浮きを点検
- ・赤外線サーモグラフィとの組み合わせで 効率的に点検

リング式レーザーポインタ 計測機能

- ・20cm径のリングに8個のレーザーで構成
- ・剥離などの面的損傷の形状測定に有効
- ・ズーム機能で細やかな損傷も点検可能

狭隘部点検力メラによる 死角部の点検実施

- ・桁端部や支承周辺の点検に効果的
- ・LED照明付きで暗部でも明るさを確保

強力照明機能

- ・桁下の暗い環境下でも 強力照明機能で明るさ確保
- 夜間作業での使用可能

その他の機能

・高圧水による点検障害物の

ハイグレードのみのオプション機能

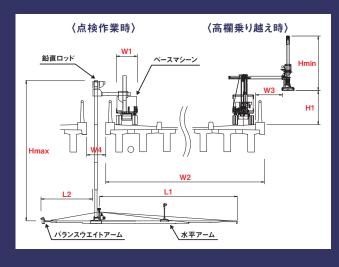
仕様

スタンダード

橋梁等(画像計測技術)対応

ハイグレード

橋梁等(非破壊検査技術)対応 NETIS:QS-170024VR



スタンダード 総重量 2t 全高 2.27m

作業可能条件

対象橋梁幅員	総幅員2m~ 20m
桁高·支間長	桁高3.0m未満・支間長5.0m以上
乗り越え 可能高さ	步道柵高1.35m~ 1.6m以下
最小設置幅	歩道幅員1m以上必要 (幅員1.5m以下の場合歩道全面通行止め)
天候	晴れ・曇・小雨(注意報発令時・積雪時不可)
風速	平均風速7m/s以下 ※ハイグレードで水平アーム10m 使用時は5m/s以下

視る・診る 仕様		スタンダード	ハイグレード		
		X	ダブル	シングル	
操作	全幅	W1	0.95m	1.25m	
ベース	全長×全高		3.08×2.27m	3.36×2.25m	
マシーン 総重量			2t	3t	
作業能力	最大作業可能幅員	W2	14m	14m	20m
	最大張り出し幅	W3	1.5m	1.5m	
	最小振り込み必要幅	W4	0.5m	0.9m	
	鉛直ロッド長	Hmin~ Hmax	2.5~8.6m	1.9~7.5m	
	高欄乗り越え可能高	H1	1.5m	1.6m	1.35m
ユーット	水平アーム長	L1	7m	7m	10m
	バランスウエイトアーム長	L2	2.45m	2.65m	
	バランスウエイトアーム形式	:	固定式	同期移動式	
運搬車両			2t車	4t車	
運搬 組立必要スペース	組立必要スペース		3m×10m	3m×13m	
組立時間			30分	50分	

お問い合わせ

乙辰 ジビル調査設計株式会社

〒910-0001 福井県福井市大願寺2丁目5番18号

福興点後支援ロボット れる・診る

お問合せはホームページから www.zivil.co.jp

